雪花算法
Java静态内部类实现雪花算法(SnowFlake)
前言
在生成表主键时,通常可以考虑自增主键/UUID/雪花算法 - 自增主键: - 1.容易被爬虫遍历数据。 - 2.分库分表可能会有ID冲突。 - UUID - 1.太长,有索引碎片 - 2.无序 - 雪花算法 - 适合在分布式场景下生成唯一ID,保证唯一可排序
原理
SnowFlake算法生成ID的是一个64bit大小的整数。
由于在Java中64bit的整数是long类型,所以在Java中SnowFlake算法生成的id就是long来存储的。
- id结构如下:
0-0000000000 0000000000 0000000000 0000000000 0-00000-00000-000000000000
- 算法描述:
- 1bit 因为二进制中最高位是符号位,1表示负数,0表示正数。生成的ID都是正整数,所以最高位固定为0。
- 41bit-时间戳 精确到毫秒级,41位的长度可以使用69年。时间位还有一个很重要的作用是可以根据时间进行排序。
- 10bit-工作机器id,Twitter实现中使用前5位作为数据中心标识,后5位作为机器标识,可以部署2^10 = 1024个节点;
- 12bit-序列号 这个是用来记录同一个毫秒内产生的不同 id。 >12位(bit)可以表示的最大正整数是2^{12}-1 = 4095,即可以用0、1、2、3、….4094这4095个数字,来表示同一机器同一时间截(毫秒)内产生的4095个ID序号。
实现代码
/**
* 描述: Twitter的分布式自增ID雪花算法snowflake (Java版)
*
**/
public class SnowFlake {
/**
* 起始的时间戳
* 2021-01-01 00:00:00
*/
private final static long START_STMP = 1609430400000L;
/**
* 每一部分占用的位数
*/
private final static long SEQUENCE_BIT = 12; //序列号占用的位数
private final static long MACHINE_BIT = 5; //机器标识占用的位数
private final static long DATACENTER_BIT = 5;//数据中心占用的位数
/**
* 每一部分的最大值
*/
private final static long MAX_DATACENTER_NUM = -1L ^ (-1L << DATACENTER_BIT);
private final static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT);
private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT);
/**
* 每一部分向左的位移
*/
private final static long MACHINE_LEFT = SEQUENCE_BIT;
private final static long DATACENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT;
private final static long TIMESTMP_LEFT = DATACENTER_LEFT + DATACENTER_BIT;
private long datacenterId; //数据中心
private long machineId; //机器标识
private long sequence = 0L; //序列号
private long lastStmp = -1L;//上一次时间戳
public SnowFlake(long datacenterId, long machineId) {
if (datacenterId > MAX_DATACENTER_NUM || datacenterId < 0) {
throw new IllegalArgumentException("datacenterId can't be greater than MAX_DATACENTER_NUM or less than 0");
}
if (machineId > MAX_MACHINE_NUM || machineId < 0) {
throw new IllegalArgumentException("machineId can't be greater than MAX_MACHINE_NUM or less than 0");
}
this.datacenterId = datacenterId;
this.machineId = machineId;
}
/**
* 产生下一个ID
*
* @return
*/
public synchronized long nextId() {
long currStmp = getNewstmp();
if (currStmp < lastStmp) {
throw new RuntimeException("Clock moved backwards. Refusing to generate id");
}
if (currStmp == lastStmp) {
//相同毫秒内,序列号自增
sequence = (sequence + 1) & MAX_SEQUENCE;
//同一毫秒的序列数已经达到最大
if (sequence == 0L) {
currStmp = getNextMill();
}
} else {
//不同毫秒内,序列号置为0
sequence = 0L;
}
lastStmp = currStmp;
return (currStmp - START_STMP) << TIMESTMP_LEFT //时间戳部分
| datacenterId << DATACENTER_LEFT //数据中心部分
| machineId << MACHINE_LEFT //机器标识部分
| sequence; //序列号部分
}
private long getNextMill() {
long mill = getNewstmp();
while (mill <= lastStmp) {
mill = getNewstmp();
}
return mill;
}
private long getNewstmp() {
return System.currentTimeMillis();
}
public static void main(String[] args) {
SnowFlake snowFlake = new SnowFlake(2, 3);
long start = System.currentTimeMillis();
for (int i = 0; i < 1000000; i++) {
System.out.println(snowFlake.nextId());
}
System.out.println(System.currentTimeMillis() - start);
}
}